
Reading and writing files

We can interact with files in three modes

1. read	mode	("r"):
Read	data	from	file	into	python	variables.	File	
remains	unchanged.

2. write	mode	("w"):
Write	data	from	python	variables	to	file.	Previous	file	
contents	is	overwritten.

3. append	mode	("a"):
Add	data	to	the	end	of	an	existing	file.

Working with files is a three-step process

1. Open	the	file
2. Interact	with	the	file

(read	from	it,	write	to	it)
3. Close	the	file

It	is	critical	to	always	close	every	file	you	have	opened!

We interact with files via file handles

• A	file	handle	is	a	python	object	that	allows	us	to	interact	with	a	
file.

• Example	1.	Open	file	for	reading:
the `open()` function opens the file
and returns a handle
file_handle = open("file.txt", "r") # open in 'r' mode
contents = file_handle.read() # reads the entire file
file_handle.close() # always close at the end

We interact with files via file handles

• A	file	handle	is	a	python	object	that	allows	us	to	interact	with	a	
file.

• Example	2.	Open	file	for	writing:
the `open()` function opens the file
and returns a handle
file_handle = open("file.txt", "w") # open in 'w' mode
write one line
file_handle.write("New file contents.\n")
file_handle.close() # always close at the end

Intermission: The newline character ("\n")

The newline character ("\n")

In [1]: s = "String with newline.\n"
print() adds an additional "\n"
print(s)
print(s)

Out[1]: String with newline.

String with newline.

The newline character ("\n")

In [1]: s = "String with newline.\n"
we can use `end` to suppress 2nd "\n":
print(s, end='')
print(s, end='')

Out[1]: String with newline.
String with newline.

The newline character ("\n")

In [1]: s = "String with newline.\n"
or remove the "\n" using .rstrip():
print(s.rstrip())
print(s.rstrip())

Out[1]: String with newline.
String with newline.

The newline character ("\n")

In [1]: s = "String with newline.\n"
using both eliminates all newlines:
print(s.rstrip(), end='')
print(s.rstrip(), end='')

Out[1]: String with newline.String with newline.

The newline character ("\n")

Unlike	print(),	the	.write() function	does	not	add	a	"\n".

Back to files

There are multiple ways to read a file

1.	Read	the	whole	file	at	once:
contents = file_handle.read()
The variable `contents` now holds the
entire file in one long string.

There are multiple ways to read a file

2.	Read	the	file	into	a	list	of	lines:
lines = file_handle.readlines()
The variable `lines` now holds a list of
strings, each corresponding to one line
in the file

There are multiple ways to read a file

3.	Iterate	over	the	file	in	a	for loop:
for line in file_handle:

code block
The code in the code block is executed
once for each line in the file.

Let Python close the file for you:
The with statement

traditional open – work with file – close sequence
file_handle = open("file.txt", "r")
contents = file_handle.read()
file_handle.close()

alternative form using `with`
with open("file.txt", "r") as file_handle:

contents = file_handle.read()
the file is closed automatically when the indented
code-block ends.

