class: center, middle, title-slide .title[ # Visualizing geospatial data ] .author[ ### Claus O. Wilke ] .date[ ### last updated: 2023-04-10 ] --- background-image: url("https://clauswilke.com/dataviz/geospatial_data_files/figure-html/world-orthographic-1.png") background-position: left 50% top 75% background-size: 45% ## Parallels (latitude) and meridians (longitude) ??? Figure from [Claus O. Wilke. Fundamentals of Data Visualization. O'Reilly, 2019.](https://clauswilke.com/dataviz) --- background-image: url("https://clauswilke.com/dataviz/coordinate_systems_axes_files/figure-html/worldmap-four-projections-1.png") background-position: left 50% top 75% background-size: 65% ## There are many ways to project onto a 2D plane ??? Figure from [Claus O. Wilke. Fundamentals of Data Visualization. O'Reilly, 2019.](https://clauswilke.com/dataviz) --- background-image: url("https://clauswilke.com/dataviz/geospatial_data_files/figure-html/world-mercator-1.png") background-position: left 50% top 70% background-size: 45% ## There are many ways to project onto a 2D plane .absolute-bottom-left[ Mercator projection: Shapes are preserved, areas are severely distorted ] ??? Figure from [Claus O. Wilke. Fundamentals of Data Visualization. O'Reilly, 2019.](https://clauswilke.com/dataviz) --- background-image: url("https://clauswilke.com/dataviz/geospatial_data_files/figure-html/world-goode-1.png") background-position: left 50% top 60% background-size: 80% ## There are many ways to project onto a 2D plane .absolute-bottom-left[ Goode homolosine: Areas are preserved, shapes are somewhat distorted ] ??? Figure from [Claus O. Wilke. Fundamentals of Data Visualization. O'Reilly, 2019.](https://clauswilke.com/dataviz) --- background-image: url("https://clauswilke.com/dataviz/geospatial_data_files/figure-html/usa-orthographic-1.png") background-position: left 50% top 60% background-size: 45% ## Projecting the US .absolute-bottom-left[ Alaska, Hawaii, and the lower 48 are far apart; difficult to show on one map ] ??? Figure from [Claus O. Wilke. Fundamentals of Data Visualization. O'Reilly, 2019.](https://clauswilke.com/dataviz) --- background-image: url("https://clauswilke.com/dataviz/geospatial_data_files/figure-html/usa-true-albers-1.png") background-position: left 50% top 60% background-size: 50% ## Projecting the US .absolute-bottom-left[ A fair, area-preserving projection ] ??? Figure from [Claus O. Wilke. Fundamentals of Data Visualization. O'Reilly, 2019.](https://clauswilke.com/dataviz) --- background-image: url("https://clauswilke.com/dataviz/geospatial_data_files/figure-html/usa-albers-1.png") background-position: left 50% top 60% background-size: 50% ## A common visualization. What happened to Alaska? .absolute-bottom-left[ Alaska and Hawaii were moved closer; Alaska was also reduced in size ] ??? Figure from [Claus O. Wilke. Fundamentals of Data Visualization. O'Reilly, 2019.](https://clauswilke.com/dataviz) --- background-image: url("https://clauswilke.com/dataviz/geospatial_data_files/figure-html/usa-albers-revised-1.png") background-position: left 50% top 60% background-size: 50% ## A fair visualization of the 50 states .absolute-bottom-left[ Alaska is the largest state; 2.2 the size of Texas ] ??? Figure from [Claus O. Wilke. Fundamentals of Data Visualization. O'Reilly, 2019.](https://clauswilke.com/dataviz) [//]: # "segment ends here" --- class: center middle ## Choropleth mapping: Coloring areas by a data value --- background-image: url("https://clauswilke.com/dataviz/geospatial_data_files/figure-html/population-density-counties-1.png") background-position: left 50% top 60% background-size: 50% ## US population density as a choropleth map .absolute-bottom-left[ Alaska has very low population density ] ??? Figure from [Claus O. Wilke. Fundamentals of Data Visualization. O'Reilly, 2019.](https://clauswilke.com/dataviz) --- background-image: url("https://clauswilke.com/dataviz/geospatial_data_files/figure-html/population-density-counties2-1.png") background-position: left 50% top 60% background-size: 50% ## US population density as a choropleth map .absolute-bottom-left[ Alaska has very low population density ] ??? Figure from [Claus O. Wilke. Fundamentals of Data Visualization. O'Reilly, 2019.](https://clauswilke.com/dataviz) --- background-image: url("https://clauswilke.com/dataviz/geospatial_data_files/figure-html/median-income-counties-binned-1.png") background-position: left 50% top 60% background-size: 50% ## US median income as a choropleth map .absolute-bottom-left[ A binned color scale can make the map more readable ] ??? Figure from [Claus O. Wilke. Fundamentals of Data Visualization. O'Reilly, 2019.](https://clauswilke.com/dataviz) --- background-image: url("https://clauswilke.com/dataviz/geospatial_data_files/figure-html/median-income-states-1.png") background-position: left 50% top 60% background-size: 50% ## Choropleth maps can be misleading .absolute-bottom-left[ Large area of Alaska makes it appear very rich; remember, it's mostly empty ] ??? Figure from [Claus O. Wilke. Fundamentals of Data Visualization. O'Reilly, 2019.](https://clauswilke.com/dataviz) --- background-image: url("https://clauswilke.com/dataviz/geospatial_data_files/figure-html/median-income-statebins-1.png") background-position: left 50% top 60% background-size: 50% ## A cartogram heatmap may be preferable .absolute-bottom-left[ Each state is shown as an equally sized square ] ??? Figure from [Claus O. Wilke. Fundamentals of Data Visualization. O'Reilly, 2019.](https://clauswilke.com/dataviz) [//]: # "segment ends here" --- class: center middle ## Maps and layers --- background-image: url("https://clauswilke.com/dataviz/geospatial_data_files/figure-html/sfbay-overview-1.png") background-position: left 50% top 60% background-size: 50% ## Maps show data in a geospatial context .absolute-bottom-left[ Wind turbines in the San Francisco Bay Area ] ??? Figure from [Claus O. Wilke. Fundamentals of Data Visualization. O'Reilly, 2019.](https://clauswilke.com/dataviz) --- background-image: url("https://clauswilke.com/dataviz/geospatial_data_files/figure-html/sfbay-layers-1.png") background-position: left 50% top 60% background-size: 50% ## Maps are composed of several distinct layers .absolute-bottom-left[ Wind turbines in the San Francisco Bay Area ] ??? Figure from [Claus O. Wilke. Fundamentals of Data Visualization. O'Reilly, 2019.](https://clauswilke.com/dataviz) --- background-image: url("https://clauswilke.com/dataviz/geospatial_data_files/figure-html/shiloh-map-1.png") background-position: left 50% top 60% background-size: 50% ## The concept of aesthetic mappings still applies .absolute-bottom-left[ Location of individual wind turbines in the Shiloh Wind Farm ] ??? Figure from [Claus O. Wilke. Fundamentals of Data Visualization. O'Reilly, 2019.](https://clauswilke.com/dataviz) [//]: # "segment ends here" --- class: middle center ## Making geospatial visualizations in R --- background-image: url("https://user-images.githubusercontent.com/520851/50280460-e35c1880-044c-11e9-9ed7-cc46754e49db.jpg") background-position: left 20% bottom 10% background-size: 65% ## The **sf** package: Simple Features in R <a href = "https://gist.github.com/edzer/f461a3a95570c4ab7edf3125c2f19d20"><img src="https://user-images.githubusercontent.com/520851/34887433-ce1d130e-f7c6-11e7-83fc-d60ad4fae6bd.gif", style = "position: absolute; top: 10%; right: 10%;"/></a> .absolute-bottom-right[ Artwork by <a href="https://twitter.com/allison_horst/status/1071456081308614656">Allison Horst</a> ] ??? Artwork by <a href="https://twitter.com/allison_horst/status/1071456081308614656">Allison Horst</a> --- ## The **sf** package: Simple Features in R .tiny-font[ ```r texas_income ``` ``` Simple feature collection with 254 features and 4 fields Geometry type: MULTIPOLYGON Dimension: XY Bounding box: xmin: -106.6456 ymin: 25.83738 xmax: -93.50829 ymax: 36.5007 Geodetic CRS: NAD83 First 10 features: FIPS county median_income moe geometry 1 48001 Anderson 41327 1842 MULTIPOLYGON (((-96.0648 31... 2 48003 Andrews 70423 6038 MULTIPOLYGON (((-103.0647 3... 3 48005 Angelina 44223 1611 MULTIPOLYGON (((-95.00488 3... 4 48007 Aransas 41690 3678 MULTIPOLYGON (((-96.8229 28... 5 48009 Archer 60275 5182 MULTIPOLYGON (((-98.95382 3... 6 48011 Armstrong 59737 4968 MULTIPOLYGON (((-101.6294 3... 7 48013 Atascosa 52192 3005 MULTIPOLYGON (((-98.80479 2... 8 48015 Austin 53687 3810 MULTIPOLYGON (((-96.62085 3... 9 48017 Bailey 37397 8652 MULTIPOLYGON (((-103.0469 3... 10 48019 Bandera 49863 7193 MULTIPOLYGON (((-99.60332 2... ``` ] --- ## The **sf** package: Simple Features in R .tiny-font[ ```r texas_income$geometry ``` ``` Geometry set for 254 features Geometry type: MULTIPOLYGON Dimension: XY Bounding box: xmin: -106.6456 ymin: 25.83738 xmax: -93.50829 ymax: 36.5007 Geodetic CRS: NAD83 First 5 geometries: ``` ``` MULTIPOLYGON (((-96.0648 31.98066, -96.06305 31... ``` ``` MULTIPOLYGON (((-103.0647 32.52219, -103.0005 3... ``` ``` MULTIPOLYGON (((-95.00488 31.42396, -95.00334 3... ``` ``` MULTIPOLYGON (((-96.8229 28.16743, -96.82127 28... ``` ``` MULTIPOLYGON (((-98.95382 33.49637, -98.95377 3... ``` ] --- ## The **sf** package: Simple Features in R .tiny-font[ ```r texas_income %>% filter(county == "Travis") ``` ``` Simple feature collection with 1 feature and 4 fields Geometry type: MULTIPOLYGON Dimension: XY Bounding box: xmin: -98.17298 ymin: 30.0245 xmax: -97.36954 ymax: 30.62825 Geodetic CRS: NAD83 FIPS county median_income moe geometry 1 48453 Travis 61451 591 MULTIPOLYGON (((-98.15927 3... ``` ] --- ## ggplot supports simple features with `geom_sf()` .tiny-font.pull-left[ ```r # plot all of Texas ggplot(texas_income) + geom_sf() ``` ] .pull-right.width-50[ ![](geospatial-data_files/figure-html/texas-no-aes-out-1.svg)<!-- --> ] --- ## ggplot supports simple features with `geom_sf()` .tiny-font.pull-left[ ```r # plot only Travis County texas_income %>% filter(county == "Travis") %>% ggplot() + geom_sf() ``` ] .pull-right.width-50[ ![](geospatial-data_files/figure-html/texas-sf-filter-out-1.svg)<!-- --> ] --- ## ggplot supports simple features with `geom_sf()` .tiny-font.pull-left[ ```r # plot the ten richest counties texas_income %>% slice_max(median_income, n = 10) %>% ggplot() + geom_sf() ``` ] .pull-right.width-50[ ![](geospatial-data_files/figure-html/texas-sf-filter2-out-1.svg)<!-- --> ] --- ## ggplot supports simple features with `geom_sf()` .tiny-font.pull-left[ ```r # color counties by median income texas_income %>% ggplot(aes(fill = median_income)) + geom_sf() ``` ] .pull-right.width-50[ ![](geospatial-data_files/figure-html/texas-no-coordsf-out-1.svg)<!-- --> ] --- ## ggplot supports simple features with `geom_sf()` .tiny-font.width-50.pull-left[ ```r # highlight the ten richest counties texas_income %>% mutate( top_ten = rank(desc(median_income)) <= 10 ) %>% ggplot(aes(fill = top_ten)) + geom_sf() + scale_fill_manual( values = c( `TRUE` = "#D55E00", `FALSE` = "#E8EEF9" ) ) ``` ] .pull-right.width-50[ ![](geospatial-data_files/figure-html/texas-sf-mutate-out-1.svg)<!-- --> ] --- ## ggplot supports simple features with `geom_sf()` .pull-left.width-50[.tiny-font[ ```r # highlight the ten richest counties texas_income %>% mutate( top_ten = rank(desc(median_income)) <= 10 ) %>% ggplot(aes(fill = top_ten)) + geom_sf(color = "black", linewidth = 0.1) + scale_fill_manual( name = NULL, values = c( `TRUE` = "#D55E00", `FALSE` = "#E8EEF9" ), breaks = c(TRUE), labels = "top-10 median income" ) + theme_minimal_grid(11) ``` ] We apply styling as usual ] .pull-right.width-50[ ![](geospatial-data_files/figure-html/texas-sf-mutate2-out-1.svg)<!-- --> ] --- ## We can customize the projection with `coord_sf()` .tiny-font.pull-left[ ```r ggplot(texas_income) + geom_sf( aes(fill = median_income), color = "black", linewidth = 0.1 ) + scale_fill_continuous_sequential( palette = "Blues", rev = TRUE ) + theme_minimal_grid(11) ``` ] .pull-right.width-50[ ![](geospatial-data_files/figure-html/texas-styled-out-1.svg)<!-- --> ] --- ## We can customize the projection with `coord_sf()` .tiny-font.pull-left[ ```r ggplot(texas_income) + geom_sf( aes(fill = median_income), color = "black", linewidth = 0.1 ) + scale_fill_continuous_sequential( palette = "Blues", rev = TRUE ) + * coord_sf() + theme_minimal_grid(11) ``` ] .pull-right.width-50[ ![](geospatial-data_files/figure-html/texas-coord-sf-out-1.svg)<!-- --> ] --- ## We can customize the projection with `coord_sf()` .tiny-font.pull-left[ ```r ggplot(texas_income) + geom_sf( aes(fill = median_income), color = "black", linewidth = 0.1 ) + scale_fill_continuous_sequential( palette = "Blues", rev = TRUE ) + coord_sf( * # Texas Centric Albers Equal Area * crs = 3083 ) + theme_minimal_grid(11) ``` ] .pull-right.width-50[ ![](geospatial-data_files/figure-html/texas-coord-sf-3083-out-1.svg)<!-- --> ] .absolute-bottom-left[ Reference: https://spatialreference.org/ref/epsg/3083/ ] --- ## We can customize the projection with `coord_sf()` .tiny-font.pull-left[ ```r ggplot(texas_income) + geom_sf( aes(fill = median_income), color = "black", linewidth = 0.1 ) + scale_fill_continuous_sequential( palette = "Blues", rev = TRUE ) + coord_sf( * # Texas Centric Lambert Conformal Conic * crs = 32139 ) + theme_minimal_grid(11) ``` ] .pull-right.width-50[ ![](geospatial-data_files/figure-html/texas-coord-sf-32139-out-1.svg)<!-- --> ] .absolute-bottom-left[ Reference: https://spatialreference.org/ref/epsg/32139/ ] --- ## We can customize the projection with `coord_sf()` .tiny-font.pull-left[ ```r ggplot(texas_income) + geom_sf( aes(fill = median_income), color = "black", linewidth = 0.1 ) + scale_fill_continuous_sequential( palette = "Blues", rev = TRUE ) + coord_sf( * # Web Mercator (Google Maps) * crs = 3857 ) + theme_minimal_grid(11) ``` ] .pull-right.width-50[ ![](geospatial-data_files/figure-html/texas-coord-sf-3857-out-1.svg)<!-- --> ] .absolute-bottom-left[ Reference: https://spatialreference.org/ref/sr-org/7483/ ] --- ## We can customize the projection with `coord_sf()` .tiny-font.pull-left[ ```r ggplot(texas_income) + geom_sf( aes(fill = median_income), color = "black", linewidth = 0.1 ) + scale_fill_continuous_sequential( palette = "Blues", rev = TRUE ) + coord_sf( * # Longitude-Latitude WGS84 (GPS) * crs = 4326 ) + theme_minimal_grid(11) ``` ] .pull-right.width-50[ ![](geospatial-data_files/figure-html/texas-coord-sf-4326-out-1.svg)<!-- --> ] .absolute-bottom-left[ Reference: https://spatialreference.org/ref/epsg/4326/ ] --- ## We can customize the projection with `coord_sf()` .tiny-font.pull-left[ ```r ggplot(texas_income) + geom_sf( aes(fill = median_income), color = "black", linewidth = 0.1 ) + scale_fill_continuous_sequential( palette = "Blues", rev = TRUE ) + coord_sf( * # Alaska Albers equal area * crs = 3338 ) + theme_minimal_grid(11) ``` ] .pull-right.width-50[ ![](geospatial-data_files/figure-html/texas-coord-sf-3338-out-1.svg)<!-- --> ] .absolute-bottom-left[ Reference: https://spatialreference.org/ref/epsg/3338/ ] [//]: # "segment ends here" --- ## We can get map data from the rnaturalearth package .pull-left[ A world map: .tiny-font[ ```r library(rnaturalearth) sf_world <- ne_countries(returnclass='sf') ggplot(sf_world) + geom_sf() ``` ]] .pull-right.width-50[ ![](geospatial-data_files/figure-html/world-map-out-1.svg)<!-- --> ] --- ## We can get map data from the rnaturalearth package .pull-left[ A map of the lower 48: .tiny-font[ ```r sf_us <- ne_states( country = "United States of America", returnclass='sf' ) sf_us %>% # exclude Alaska (US02), Hawaii (US15) filter(!code_local %in% c("US02", "US15")) %>% ggplot() + geom_sf() ``` ]] .pull-right.width-50[ ![](geospatial-data_files/figure-html/lower-48-map-out-1.svg)<!-- --> ] --- ## Further reading - Fundamentals of Data Visualization: [Chapter 15: Visualizing geospatial data](https://clauswilke.com/dataviz/geospatial-data.html) - **sf** package documentation: [Simple Features for R](https://r-spatial.github.io/sf/index.html) - **ggplot2** reference documentation: [`geom_sf()`, `coord_sf()`](https://ggplot2.tidyverse.org/reference/ggsf.html)