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Specific Aims 
RNA viruses that have been attenuated make excellent live vaccines, and several such vaccines have had ma-
jor public health impact. However, major stumbling blocks need to be overcome if live vaccines are to be used 
more broadly. In particular, we need to know how to predict levels of attenuation and predict reversion: attenu-
ated viruses may revert into a more virulent form within the subjects receiving the vaccine. This phenomenon 
occurs with regularity in the case of the Oral Polio Vaccine (OPV). The Sabin 2 strain, in particular, differs in 
only two nucleotide positions from wild type, and reverted virus can commonly be isolated from vaccinated pa-
tients. While this problem can be overcome by using inactivated viruses as vaccines, live vaccines frequently 
have advantages in terms of administration, storage, and conferred immunity. There is thus a critical need to 
identify and develop reliable, evolutionarily stable approaches to viral attenuation. Furthermore, synthetic biol-
ogy now allows us to create arbitrary viral genomes, so any conceived attenuation strategy is no longer limit-
ing. We merely need to know how to predict attenuation—and its evolutionary reversal. 

Our long-term goal is to elucidate the biological mechanisms of viral attenuation, fitness, and adaptation. 
The objective for this proposal is to investigate viral attenuation and recovery in bacteriophage T7. Our central 
hypothesis is that engineered transcriptional and translational de-optimization yields reliable, evolutionarily sta-
ble attenuation of viruses. T7 provides a unique model system with which to probe generic principles of viral 
attenuation, because its genetic regulatory circuitry is well understood and a detailed, mechanistic computer 
model exists to interpret and predict transcription and (to a lesser extent) translation. We have assembled an 
experienced team of investigators to pursue this project, consisting of an experienced phage evolutionary biol-
ogist (Jim Bull), an expert in proteomics and molecular biology (Dan Boutz), and an expert in translational se-
lection and codon-usage bias (Claus Wilke), all at The University of Texas at Austin. We have three Specific 
Aims: 
 

Aim 1: Assess fitness effects and recovery suppression in different genetic recodings of bacterio-
phage T7. Hypothesis: Various regulatory modifications (codon de-optimization, gene rearrangements, RNA-
structure modifications, promoter deletions) reduce fitness to varying degrees; the more that fitness reduction 
is caused by genetically irreversible modifications, the more resistant these recodings are to recovery. Our pri-
or work has shown that fitness in bacteriophage T7 can be reduced by several engineered designs, and that 
fitness recovery is often suppressed during even 1000 generations of subsequent adaptation. Here, we will 
extend those approaches, measuring the fitness effects of non-preferred codons throughout the genome, of 
genome rearrangements, and of recodings intended to modify RNA secondary structure or promoter knock-
outs. We will then observe fitness recovery and molecular evolution of recoded viruses for 1000 generations.  
 

Aim 2: Dissect molecular mechanisms of fitness reduction and recovery. Hypothesis: The various genetic 
recodings we apply here all result in dysregulated protein abundances, and several impede initiation or elonga-
tion rates of either transcription or translation. Using the viruses from Aim 1, we will assess effects of protein 
dysregulation by measuring dynamics of viral mRNAs and protein abundances in infected cells. We will assess 
the impact on translation through ribosome profiling.  
 

Aim 3: Develop a predictive, mechanistic model of how genome recoding affects T7 fitness. Hypothesis: 
For phage T7, the experimental findings of Aims 1 and 2 can be integrated into a coherent, mechanistic model 
of the phage life cycle. Gene regulation and life cycle of bacteriophage T7 are well understood, and a second-
generation mechanistic model exists that describes all stages of a wild-type T7 infection. We will build on this 
model to develop a predictive model of T7 genome attenuation and evolution. 

 

This project will result in a comprehensive, system’s level understanding of T7 gene regulation, transcription, 
and translation. We will develop the capability to systematically engineer attenuated T7 variants that are re-
sistant to evolutionary reversion. This work will be a first step towards rational design of live vaccines. 
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Research Strategy 

A. SIGNIFICANCE 
Viral attenuation has led to many of the most successful vaccines known to medicine (live virus vaccines), and 
many of them have realized profound success. Yet how to achieve attenuation has been a challenge. It is 
widely appreciated that reduced viral growth rate is the most common avenue to attenuation—a virus that no 
longer causes disease. How to get a virus with reduced growth rate has been less obvious [1]. For most of a 
century, the standard method of attenuation was hit-and-miss: a virus would be adapted to novel conditions, 
and the resulting adaptation would commonly reduce its ability to grow in the former host. Whether the attenua-
tion would be sufficient to allow infection but avoid disease was unpredictable and required direct experimenta-
tion with live hosts.  

The landscape for attenuation has vastly improved. Synthetic biology has provided new opportunities for 
engineering attenuated viruses. In one case, silent codon modification, the magnitude of attenuation is even 
generalizable across diverse viruses [2–12]. Furthermore, the level of growth rate reduction with silent codon 
modification has been shown to be quantitatively tied to the number of codon changes [12,13] (Figure A1). 
Another apparently generalizable approach uses rearrangement of the genes in viral genomes to disrupt fit-
ness, but the degree of attenuation is far less predictable than with codon modification [14–17].  

Attenuation is not the only goal in creating a safe and effective vaccine. A further issue is the evolutionary 
stability of an attenuated virus. Since attenuated viruses are live, they create ongoing infections in the patient. 
Disease is avoided because of reduced viral growth rate, but the live viruses can and do evolve during the in-
fection and continue evolving when transmitted to other hosts. Some live vaccines are known to evolve to the 
point that attenuation is fully reversed (polio virus). Reversal of attenuation is especially serious when we are 
trying eradicate a virus or when trying to prevent its invasion into the human population—in either case, the 
vaccine runs the risk of evolving and creating the problem that it was engineered to solve. Thus the live Sabin 
or oral polio vaccine has brought us to the brink of global eradication, but the remaining areas of viral ende-
mism have such poor vaccine coverage that they allow the vaccine to evolve and start new epidemics [18]. 
Wild-type type II polio virus has in fact been eradicated worldwide, but a vaccine-derived type II continues to 
circulate and cause disease.  

 
Figure A1: Recoding of T7’s major capsid gene 10A with non-preferred codons causes fitness decline in propor-
tion to the amount of codon de-optimization achieved. (A) We introduced non-preferred codons (highlighted in yellow) 
into the wild-type form of gene 10A until a given overall fraction of preferred codons (Fpr) was obtained. Note that the wt is 
predominantly encoded with preferred codons and has Fpr = 0.68. (B) We found that fitness of the recoded variants de-
clined approximately linearly with the number of non-preferred codons introduced. Note that fitness is measured in units of 
log(2), so a reduction by 10 units corresponds to an approximately thousand-fold reduction in the number of offspring pro-
duced. From [13].  
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Evolutionary stability of attenuation is directly linked to the fitness landscape in which the attenuated viral 
strain resides. If much of the attenuation can be reversed with just a few mutations, then live vaccines are likely 
to revert. Therefore evolutionarily stable attenuation has to be created with an appreciation of how to block ad-
aptation. One evolution-retarding approach uses a strategy of “death by a thousand cuts”: if many mutations 
with individually small effects are used to attenuate, then reversion may take many hundreds or thousands of 
generations, since individual mutations of small effect are slow to fix in the viral population. We have demon-
strated this mechanism in bacteriophage T7 by codon de-optimizing a single gene via the introduction of 182 
synonymous mutations; we showed that we could achieve a hundred-fold reduction in fitness (number of de-
scendants per hour) that was resistant to reversion (Figure A2). A second approach is to attenuate by ‘irre-
versible’ genetic changes, such as deletions and genome rearrangements. In all cases, however, the presump-
tion of irreversibility rests on a necessarily imperfect knowledge of the viral intracellular dynamics and possible 
escape mechanisms. Improving that imperfect knowledge is a focus here. 

The enterprise of biotechnology is on the brink of being able to engineer predictably attenuated viruses with 
ease; indeed we may have attained that ability with some methods already. Furthermore, we are poised to 
create vaccines that do not revert to high virulence. The latter challenge is the more difficult, however, because 
it requires an understanding of evolutionary mechanisms in response to engineering—which is a frontier in 
synthetic biology. The work proposed here will develop that frontier. A model virus (bacteriophage T7) will be 
engineered, evolved, analyzed at the sequence, transcript, and proteomics levels, all interpreted with a viral 
virtual model. T7 is unusual among viruses in that it encodes its own RNA polymerase, so its gene expression 
is amenable to quantitative understanding [19,20]. As was true of the first-generation T7 model, the second-
generation model of the T7 life cycle (TABASCO) remains the only viral model parameterized empirically. 
Here, this model will both serve as a foundation for interpreting results and as a basis for further model devel-
opment. The end product should be a widely generalizable understanding of viral attenuation and evolutionary 
stability. 
 
B. INNOVATION 
There are two ways in which this work is novel. First is the proteomic and RNA analysis of viral evolution and 
fitness recovery. To date, studies of recovery from codon-based attenuation have been limited to fitness and 
sequence analysis [12,13]. The inclusion of protein expression and RNA expression adds an essential compo-
nent of the genotype-phenotype map that is perhaps most critical to fitness, and indeed, this type of analysis 
has been done to study the bases of attenuation [2,10–12]. The T7 life cycle is linear, with genome injection, 
ordered gene expression, and ultimately progeny production before dissolving the cell wall at lysis. The resolu-

 

Figure A2: Limited fitness recovery even after 
~1000 generations of evolution. We studied 
fitness recovery of the attenuated strain T7-
10A0.1, which was the most de-optimized strain 
we constructed, with Fpr = 0.1. Two replicates 
(S1 and S2) were allowed to adapt for ~100 gen-
erations, and showed nearly no fitness increase. 
One replicate (L1) was allowed to adapt for 
~1000 generations, and showed moderate fit-
ness increase. Replicate R+ adapted for ~30 
generations, but in the presence of wt gene 10 
on a plasmid. This gene was taken up by the 
phage, which subsequently attained wt fitness, 
thus demonstrating that complete recovery would 
be possible if all required mutations could occur 
simultaneously. From [13]. 
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tion offered by MassSpec proteomics enables a coupling of genome-wide protein expression with fitness and 
changes in DNA sequence. We can thus ask whether a favored sequence change moves the life cycle closer 
to wild-type balance of protein expression. If the usual outcome of fitness recovery is to restore wild-type pro-
tein levels, it then becomes possible to design attenuation strategies that permanently disrupt that balance 
(e.g., by removing critical promoters). Indeed, the very analysis of protein levels enables us to study the effects 
of different attenuation strategies at a mechanistic level. 

Second, the proposed work is highly integrative, spanning proteomes and transcriptomes, computational 
modeling and prediction, ultimately tied to fitness and evolution. Varied engineered modifications of viral ge-
nomes will be analyzed at the level of fitness for their immediate effects and the ability of the virus to evolve 
recovery. Fitness will be tied to mRNA and protein expression levels as well as and ribosome occupancy on 
transcripts. The results will be integrated in a close handshake with a virtual model of the life cycle, a model 
that already includes transcription and translation. This work will lead to a 3rd generation virtual model, one 
that can be used to predict the effects of genome manipulations and evolution. 

 
Why a bacterial virus? For a long term goal of improving attenuated vaccines, it may seem ill advised to use 
a non-pathogenic virus, especially a virus that infects bacteria. Indeed, if the goals of this work could be 
achieved in the same time frame with a virus that infects humans or even other mammals, we would readily 
accept that such work warrants a higher priority than ours. The reality is that no other virus – even another 
phage—has the foundation for understanding viral dynamics and viral evolution that T7 offers. The second-
generation virtual model of the T7 life cycle (TABSCSO) offers unprecedented detail for interpreting and pre-
dicting viral attenuation and evolution. It remains the only viral virtual model parameterized empirically. Our 
platform of genome design, synthesis, evolution and prediction/interpretation is unparalleled, and the ease and 
safety of T7 work enables rapid progress on all fronts. Even the proteomic work is vastly simpler and more re-
peatable in our prokaryotic system than in a eukaryotic system. Furthermore, the fact that several attenuation 
methods tested here have been demonstrated to work for eukaryotic viruses (silent codon modification, ge-
nome rearrangement) suggests that our results will generalize. If T7 proves highly predictable, the work will 
inspire parallel attempts with other viruses. 
 
C. APPROACH 
Prior work. This project is a continuation of R01 GM088344, The Biophysical Basis of Translational Selection, 
08/01/2009 – 05/31/2015. The prior project has resulted in 29 publications to date [13,21–48]. The primary 
aims of this project were to identify the selective forces that shape codon-usage bias, to test experimentally 
whether selection acts against protein misfolding, and to investigate how protein biophysics shape codon us-
age bias. Notable results from this project have been the discovery of a universal trend of reduced mRNA sec-
ondary-structure stability near the start codon, for both cellular organisms [21,37] and viruses [38], an experi-
mental demonstration of the fitness cost of protein misfolding [34], the discovery that codon usage correlates 
with specific features in protein structure [44], and, most important for this application, a demonstration that 
codon de-optimization leads to substantial and evolutionarily stable attenuation in bacteriophage T7 [13] (see 
also Figures A1 and A2). 

Here, we will build on these prior efforts and will apply our insights into translational selection to the prob-
lem of evolutionarily stable viral attenuation.  

 
Team. We have assembled a diverse team of experienced scientists with a history of collaboration. Jim Bull 
has over two decades of experience with experimental evolution of phages. He will lead Aim 1. Dan Boutz has 
over a decade of experience with molecular biology and proteomics. He will lead Aim 2. Claus Wilke has 15 
years of experience in computational biology, and was PI on the previous grant. He will lead Aim 3 and direct 
the overall project.  
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Conceptual framework. Our central hypothesis is that reliable, evolutionarily stable attenuation of viruses can 
be achieved through targeted genome recodings that interfere with efficient transcription and translation in 
ways that are not easily reversed by evolution. Figure C1 illustrates several recodings we will consider, their 
expected effect on transcription and translation, and resulting protein abundances. In this project, we will con-
struct these recoded genomes for bacteriophage T7 (Aim 1), measure their effects on transcription, translation, 
and protein abundance (Aim 2), and develop a calibrated model of gene expression and regulation for T7 (Aim 
3). 
 
Aim 1: Assess fitness effects and resistance to recovery of different genetic recodings of bacteri-
ophage T7 
 
The methodology used in this aim is straightforward and has been developed extensively in prior work: ge-
nomes are created, fitness is assessed (measured as viral growth rate in defined conditions), the genomes are 
evolved in a constant environment (hosts are replaced to avoid co-evolution), and fitness is measured as the 
evolution continues. Genome sequences of isolates and populations are now trivially obtained [17,49]. Alt-
hough this aim is based heavily on methods used in prior work, it provides the foundation for the analyses in 

 
Figure C1: Schematic drawing of genome recodings considered and their likely effects on transcription, transla-
tion, and resulting protein abundance. 1. mRNA expression in T7 is approximately proportional to gene order, such 
that later genes show higher expression levels than earlier genes. 2. De-optimizing a late, highly expressed gene se-
questers ribosomes and causes overall reduction in protein abundance, even for genes that weren’t recoded. 3. De-
optimizing an early gene of low expression level impedes translation of that gene but has little effect on other genes. 4. 
Changing the secondary structure of mRNA near the start codon reduces translation initiation for that gene, resulting in 
lowered protein abundance for that gene. 5. Changing the gene order affects mRNA expression levels and consequently 
protein abundances. 
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Aims 2 and 3, which add fundamentally new dimensions to work that has gone before. Furthermore, the ge-
nomes created and evolved in Aim1 will provide the genomic material for the analyses in Aims 2 and 3. The 
motivation for particular designs is offered below. 
 
Aim 1.1: Change synonymous codon usage throughout the genome. In our prior work, we have changed 
codon usage in gene 10A only (Figures A1 and A2). Here, we will expand this work to three other genes lo-
cated throughout the T7 genome. 

T7 is a dsDNA virus of 40kb with nearly 60 genes encoded on one strand of its linear genome; there are 
few gene overlaps. Approximately 20 of those genes are essential under standard laboratory conditions. Our 
prior work on codon de-optimization modified only a single gene in T7, the major capsid gene 10A. This gene 
is the most highly expressed of all T7 genes. Using the codon usages of the E. coli host to classify codons as 
‘preferred’ or not, the fraction of preferred codons in wild-type gene 10A is 0.68 (of 345 codons, excluding the 
stop). We constructed genes in which that fraction was 0.5, 0.3, 0.2 and 0.1; the 5’ and 3’ ends of the gene 
were avoided. These modified genes were recombined into a common genomic backbone. The most extreme 
modification had 182 changed codons. Fitness, measured as doublings/hr, declined linearly with number of 
codon changes, from 43.2 for wild-type to 35.7 for the most extreme engineering. Thus the maximal attenua-
tion was not extreme, but the effect was predictable. Evolution of the most extreme genome yielded no detect-
able fitness increase during approximately 100 generations, but nearly half the fitness was recovered in 1000 
generations of adaptation. The population from this latter adaptation exhibited 9 nucleotide changes polymor-
phic, 7 of them outside the codon-modified region [13]. 
  
Plan. The chief questions arising from this work are: (i) How much attenuation is achieved when codons are 
modified in single genes whose wild-type expression is lower than that of 10A? (ii) How will viral attenuation 
behave when changes are spread over multiple genes? (iii) Can evolutionary recovery be suppressed even 
further by spreading codon modifications across multiple genes? (iv) Which parts of genes offer the most effec-
tive paths to attenuation by recoding? 

For comparison to our prior work on 10A, we will de-optimize codons in 3 genes: RNA polymerase (gene 
1), DNA polymerase (gene 5), and an interval virion protein gene (gene 16), these genes representing early, 
middle, and late genes spread across the genome (see below for meaning of early, middle and late). De-
optimization will be introduced to the same level as in the most extreme 10A modification (10% preferred co-
dons remaining). Levels of attenuation will be compared for T7 genomes with single-gene modifications, dou-
bles, and all 4 (including gene 10, from the previous study). Adaptations of the singles, doubles and the quad-
ruple will be carried out as in the previous study to monitor fitness recovery and sequence changes. We partic-
ularly wish to know whether recovery rate shows any pattern with the number of genes modified.  

We will adopt two distinct engineering strategies. First, we will de-optimize extensively the middle of genes 
and avoid modifying the 5’ and 3’ ends (as in our previous study). For this work, non-preferred codons will be 
introduced to the same level as in the most extreme previous 10A modification (10% preferred codons remain-
ing). Second, we will limit codon modification to the 5’ ends, but introduce synonymous codons that are pre-
dicted to form stable RNA secondary structures. This approach is motivated by experimental work showing re-
duced expression of genes with more stable 5’ mRNA secondary structure in E. coli [50,51], and by our com-
putational work demonstrating selection for reduced 5’ mRNA secondary structure in cellular organisms [21,37] 
as well as viruses [38]. The utility of the latter approach is simplicity (few codons need be changed), but it may 
also be prone to easy reversion. 
 
Aim 1.2: Change gene order in the phage genome. As an alternative to extensive codon de-optimization, we 
will also change the order of the genes in the phage genome. Gene expression in T7 is well understood be-
cause the virus encodes its own RNA polymerase and has phage-specific promoters spread across much of its 
genome. The genome is linear, and the 5’ end of the positive strand enters the cell first. The genome is divided 
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into early, middle, and late regions, these regions defined according to expression properties. The host RNA 
polymerase is responsible for expression of the early region, which spans several non-essential genes and the 
first essential gene, phage RNA polymerase (gene 1). Once the phage RNA polymerase (RNAP) is made, it 
drives expression of middle and late regions from the 17 phage-specific promoters. Transcript overlap is ex-
tensive, however, with nearly all genes present on transcripts initiated at multiple promoters. 

Gene order is important to expression both via juxtaposition to different promoters and because the phage 
RNAP becomes modified during the phage life cycle so that its activity shifts in favor of late promoters as the 
infection progresses. Disrupting gene order is thus expected to reduce fitness by creating imbalances in pro-
tein abundances. Furthermore, since the wild-type gene order is not easily re-evolved in a genome with altered 
gene order, this method of attenuation should be largely irreversible. These expectations have been borne out 
in two studies of T7 [17,52]. So far, only limited rearrangements have been generated, chiefly those with dis-
placed RNAP genes (Figure C2).  

Plan. The T7 phages with altered gene order that were studied in previous work (see [53,54] and Figure C2) 
will provide the initial material for the analyses in Aims 2 and 3. As most of those rearrangements were simple 
displacements of the phage RNAP gene, we expect the proteomic analyses to reveal the obvious: The phage 
life cycle is delayed because middle and late phage genes are slow to be expressed, but once the phage 
RNAP is expressed, the life cycle should be normal. However, of greater interest are the evolved phages that 
retained the engineered gene order but increased in fitness. What changes in gene expression are coupled 
with the fitness increase? Genome sequences of the evolved phages do not reveal any insight; we expect the 
proteomic analysis to be highly informative. In addition, there is one phage genome that exchanged early and 
late genes; the driving question here is whether the gene expression patterns match the (straightforward) ex-
pectations. Do expression patterns of translocated genes follow those of the region in which they are located?  

Beyond existing phages with reordered genomes, we will construct new genomes with specific motivations: 
(i) We will move genes between early, middle, and late regions. (ii) We will reorder genes within functional 
modules (e.g., scaffolding and major capsid genes, which are typically juxtaposed in phage genomes, will be 
separated). 

The motivation for these types of modifications is that gene order is often highly conserved in viruses (at 
least for major classes of genes). Thus a finding that these types of rearrangements usually attenuate and 
whether those attenuations also are evolutionarily stable should be broadly useful. The combination of prote-
omics, transcriptomics, ribosome profiling, and virtual model analysis done here should give insight to the 
mechanisms of attenuation and recovery that cannot be obtained by fitness measures and sequence analysis. 
 
Aim 1.3: Introduce promoter knockouts. The foundation for this Aim lies in well-studied mechanisms of T7 
transcription. Can we attenuate by relatively simple reductions in transcription? And are those mechanisms 
evolutionarily stable? This subaim is the simplest of the 3, and it is also the one most easily integrated into 
Aims 2 and 3. The data are especially amenable to interpretation in the virtual model. 

 

Figure C2: T7 variants with rearranged ge-
nomes show limited fitness recovery. (A) 
Several T7 variants considered. (B, C) Over 100 
generations of adaptation are not sufficient to 
recover wt-level fitness. (D) Maximal attainable 
fitness for different variants. From [53]. 
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T7 has 17 promoters, not all identical [55]. The T7 promoter sequence is considered to span 23 bases, and 
the bases important to recognition are worked out from bioinformatics and in vitro transcription [56,57]. Like-
wise, the importance of different T7 promoters to the transcriptome has been worked out for decades [55]. 
However, fitness effects of specific promoter knockouts have not been examined. We conducted one evolu-
tionary study related to T7 gene regulation via wholesale promoter changes: a T7 phage deleted of its RNAP 
gene was forced to grow under control of the T3 RNAP gene [58]. At least in vitro, T3 RNAP activity on T7 
promoters is about 1% that of T7 RNAP; this low activity stems from 1-2 bases in the promoter sequence, so 
evolution can readily improve expression by T3 RNAP. Initial fitness was low but recovered profoundly (from a 
fitness of ~5 doublings/hr to a final fitness of ~33; the presumed upper limit was 37, so the adaptation likely 
neared the maximum). Sequence evolution was seen in approximately half the T7 promoters. The approach 
used in that study gives some insight to T7 regulatory evolution but it does not directly address what is pro-
posed here, which is to modify selected promoters so that they cannot re-evolve activity. 
 
Plan. We will knock out single and multiple promoters, investigating the fitness effects and changes in tran-
scription and translation (Aim 2), comparing both to virtual model predictions (Aim 3). Knock-outs will maintain 
sequence length but destroy recognition by the RNAP. Late promoters immediately upstream of the major cap-
sid gene (phi-10) and scaffold protein gene (phi-9) are expected to have the largest effects. We will further ask 
whether promoter knockouts with the largest attenuating effects correspond to the promoters that evolved in 
the study of T7 grown on T3 RNAP [58]. This simple study will thus integrate the virtual model and a prior study 
in a test of whether the T7 regulatory network is well understood.  

Modified viruses will be adapted for hundreds of generations. Given the high sequence-specificity of T7 
RNAP for its promoters, is not expected that promoter activity will evolve in situ at ablated promoters. However, 
duplications of existing promoters may evolve to compensate [e.g., 59], although it is not expected that duplica-
tions of existing promoters will compensate for imbalances in gene expression. Thus, while there may be com-
pensatory evolution at a molecular level, it may have only modest fitness effects. 
 
Expected results, Aim 1. We have conducted enough studies of the types proposed in Aim 1 that we can an-
ticipate the general classes of outcomes. First, most modifications of the T7 genome will reduce fitness but not 
eliminate the ability of T7 to grow; under ideal conditions T7 grows at 42-43 doublings/hr, which offers a huge 
dynamic range for fitness reduction without killing the virus. Second, many of the modifications proposed here 
will be robust to large magnitudes of compensatory evolution; we expect some fitness improvement but not 
much. This latter prediction may fail, but improving our ability to predict such outcomes is part of the motivation 
for our work. Third, it will be straightforward to observe sequence evolution of attenuated viruses but—in the 
absence of the proteomics and virtual model—it may be difficult or impossible to interpret how those changes 
improve fitness. Developing a mechanistic understanding of relationship between sequence changes and fit-
ness is part of our goal and motivates Aims 2 and 3. 
 
Potential problems and solutions, Aim 1. Given that the methods used in Aim 1 mirror those used success-
fully by us in the past, we do not anticipate difficulties with Aim 1 per se—constructs, adaptations and sequenc-
ing. Potential difficulties in integrating Aim 1 with Aims 2 and 3 will be discussed below. 
 
Aim 2: Dissect mechanisms of fitness reduction 
A major goal of this project is to develop a mechanistic understanding of attenuation mechanisms.  Aim 1 de-
velops the genomes and fitness measures. Aim 2 establishes the components and timing of the viral intracellu-
lar life cycle. Since T7 infects a bacterium (which is single-celled), and progeny production is essentially a mat-
ter of the virus producing a small number of protein (and DNA) components that self-assemble, establishing a 
mechanistic basis of fitness is feasible in this system. Our approach is two-pronged, going after the time 
course and abundance of proteins as well as the dynamics of viral RNA and ribosomal occupancy of that RNA. 
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Aim 2.1: Measurement of viral and cellular protein abundances. Analysis of phage proteomics rarely ex-
tends beyond the identification of structural proteins composing the virion [60,61], while the dynamics of phage 
protein expression during infection remain largely uncharacterized. A recent proteomic analysis of phage 2972 
infection in S. thermophilus demonstrated the power of the shotgun proteomics approach by quantitatively pro-
filing 37 of 40 predicted phage proteins and nearly 50% of host proteins [62] over the course of infection. While 
this prior work has clearly demonstrated that shotgun proteomics is a viable approach to dissecting phage biol-
ogy, this technique has not previously been applied to T7 or any other well characterized phage that might be 
used for our goals.  

We have begun carrying out shotgun proteomics, profiling the expression of phage proteins over the 
course of infection and for both wt and modified T7 genomes. At this preliminary stage, we hoped to identify 
the functional impact of codon de-optimization, so the assay included three published genomes from our study 
of the deoptimized major capsid gene: the wild-type control, the most severely deoptimized phage (182 silent 
codon changes) and the deoptimized genome that had recovered about half of the lost fitness [13].  

Figure C3 shows abundances of T7 proteins as well as of E. coli proteins at 3 times after infection (see al-
so Figures A1 and A2 for corresponding fitnesses of the 3 viruses). While we have only modified codon usage 
in gene 10A for this study, we see systematic reductions in the expression of most phage proteins in the deop-
timized genome (Figure C3 top two rows) but not host proteins (Figure C3 bottom two rows). This finding sug-
gests ribosome sequestration as the main cause of fitness attenuation—the ribosomes get stuck translating 
gene 10A and thus are less available for other transcripts. We can also see the temporal progression of T7 
protein abundance. Production of gene 10A starts immediately upon infection, but the gene’s abundance rises 
throughout the entire infection cycle. By contrast, the tail A and tail fiber proteins are produced only late in the 
infection cycle. Finally, the DNA and RNA polymerases reach their maximum abundances around 5 min, be-
fore most other T7 proteins are maximally expressed. 
 
Plan. We will systematically measure viral protein abundances from the T7 phage genomes generated in Aim 
1. Samples of phage-infected E. coli will be collected in triplicate at three time-points (1min, 5min, 9min) post 
infection, so that the analysis of a single T7 variant requires 9 samples. Samples will be analyzed by nanoLC-
MS/MS on an in-house LTQ-Oribtrap mass spectrometer (standard bottom-up, shotgun proteomics experi-
ment). We will analyze MS data using Proteome Discoverer v1.4 (Thermo Scientific) to obtain spectral counts, 
which represent protein abundances. 
 
Aim 2.2: Measurement of mRNA abundance by RNA-seq. While codon de-optimization of genes is not ex-
pected to affect transcript abundance, promoter ablation or gene rearrangements likely result in either in-
creased or decreased transcript levels relative to wt. We will measure these changes in transcript levels using 
whole-genome RNA-seq. In addition to revealing any changes in T7 transcription, as in the case of the prote-
omics, our approach will also reveal if phage infection has measurable effects on an E. coli transcripts. 
 
Plan. For all samples collected for proteomics in Aim 2.1, we will collect duplicate samples (in triplicate at each 
time point) for profiling mRNA abundances by RNA-seq. RNAseq of E. coli samples is routinely done in our 
laboratories, and the entire process is outsourced to the Genome Sequencing and Analysis Facility (GSAF) at 
UT Austin. We submit pelleted cells to the GSAF and receive in return BAM files containing raw reads. These 
reads are then processed with FLEXBAR [63], aligned to the E. coli and T7 reference genomes with Bowtie 2 
[64], and analyzed for differential expression among samples with DESeq [65].  
 
Aim 2.3: Measurement of translational efficiency by ribosome profiling. Ribosome profiling is a relatively 
new method which generates high-resolution maps of ribosome density on active transcripts, thus providing a 
detailed view of translational efficiency [66]. Although this method is only a few years old, it has already been 
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utilized to study translation of bacteriophage lambda [67] and cytomegalovirus [68] genes during infection, 
along with multiple studies of E. coli [69,70]. 
 
Plan. We will follow the standard protocol for ribosomal profiling in E. coli [69,70]. In brief, we will infect E. coli 
bacteria with wt or modified T7 phage, harvest after ~9min, filter, and flash freeze. We will then add GMPPNP 
and chloramphenicol, pulverize cells in liquid nitrogen, digest RNA for 1h with micrococcal nuclease (MNase), 
and isolate ribosome-protected fragments by sucrose gradient and phenol extraction. From these fragments 
we will generate a cDNA library and sequence. The reads are then mapped onto the E. coli and T7 genomes 
as under Aim 2.2, and the mapped profile indicates ribosome occupancy. 

 
Figure C3: Relative protein abundances for selected T7 and E. coli genes, measured at 3 time points post infec-
tion and for 3 different infecting T7 strains each. Top 2 rows: T7 protein abundances generally increase over time, and 
protein abundances are commensurate with strain fitness (see Figure A2 for strain fitnesses). Bottom 2 rows: Shown are 
the 8 most-highly expressed proteins in E. coli. Relative abundances are generally of comparable magnitude regardless of 
time point and infecting T7 strain. This pattern holds throughout the E. coli proteome. 
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Expected results, Aim 2. This Aim will generate the data used to parameterize and improve the mechanistic 
model studied in Aim 3. However, the RNA and proteomics data will first be used to answer fundamental ques-
tions about the mechanistic bases of attenuation. We have clear expectations for some of the genomic modifi-
cations (see also Figure C1). (1) Promoter ablation should have its effect on protein levels through decreases 
in transcript abundance. (2) Genome rearrangement should cause imbalances in the relative abundances of 
proteins. (3) We should be able to discriminate the many models for the effects of codon de-optimization. For 
example, codon de-optimized highly expressed genes may sequester ribosomes and indirectly affect expres-
sion of all T7 genes. By contrast, de-optimized genes with low expression level will not have such global ef-
fects. Altered RNA secondary structure will affect only translation initiation. By measuring protein and transcript 
abundances as well as ribosome profiles we will be able to dissect the various possibilities and identify the 
specific mechanisms that caused dysregulation for specific T7 variants. These insights will be useful inde-
pendent of the work done in Aim 3. 

Finally, we do not expect to see changes in protein or transcript abundances among the E. coli transcripts/ 
genes, but we will analyze all samples for this possibility. Finding differentially expressed E. coli genes would 
likely indicate novel T7 biology that has not previously been recognized.  
 
Potential problems and solutions, Aim 2. We do not expect to encounter any major issues with the prote-
omics, since we have already successfully carried out protein abundance measurements on T7-infected cells 
(Figure C3). Importantly, the vast majority of E. coli proteins showed identical or near identical abundances 
among conditions, highlighting the reproducibility of our measurements Figure C3, bottom two rows.) We simi-
larly do not expect to encounter major issues with RNAseq. Our sequencing facility routinely processes E. coli 
samples. Moreover, Wilke is involved in other collaborations doing RNAseq and has developed extensive ex-
perience handling the data analysis side of these samples. Ribosome profiling, by contrast, is new to us, even 
though some collaborators at UT have carried it out successfully. We consider this part the high-risk aspect of 
the proposal, with the potential to produce a wealth of new insight. Importantly, our overall project success 
does not crucially depend on ribosome profiling data. Should these data prove to be unreliable or difficult to 
obtain, we can proceed with Aim 3 on the basis of protein and transcript abundances alone.    
 
Aim 3: Develop a predictive, mechanistic model of how genome recoding affects T7 fitness 
There has been extensive interest in the recent literature in disentangling how exactly transcription and transla-
tion are affected by different gene encodings, and in particular by codon usage (see e.g. [21,50,51,71–81]). 
This literature has considered a bewildering array of different hypotheses, including reduced translation speed 
or accuracy, depletion of cellular pools of polymerases, ribosomes, or tRNAs, traffic jams among polymerases 
or ribosomes, and modified translation initiation due to RNA secondary structure. What is missing from the cur-
rent literature is a systems-level approach to the problem, where all these different possibilities are evaluated 
in a single, coherent framework.  

In this context, T7 provides a unique model system for studying transcription and translation. T7’s biology is 
extremely well characterized [55,82–85], and several generations of models describing T7’s gene regulation 
and life cycle have been developed [20,84,85]. While the first models of T7 were simple ODE models of gene 
expression [84,85], the most recent and most sophisticated computational model for T7, called TABASCO, 
provides a stochastic simulation of T7 gene expression and translation inside the E. coli cell [20]. We will build 
on this model to develop a comprehensive, system’s level mechanistic model of how genome recodings affect 
T7 replication and fitness.  
 
Aim 3.1: Calibrate TABASCO simulation for wild-type and recoded T7 genomes. The TABASCO simula-
tor [20] provides a nucleotide-level simulation of polymerase movements along the T7 genome, and it simu-
lates subsequent translation via a simplified translation model. The source code for TABASCO is freely availa-
ble, and the Wilke lab has successfully run the model for T7 wt as well as for several simulated genome modi-
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fications (Figure C4). Importantly, the 2007 TABASCO paper [20] focused on introducing the novel simulation 
techniques in Tabasco, not on parameter optimization to obtain the best possible T7 simulator. And since pub-
lication of this paper, no further research on this topic has been carried out. Therefore, we will begin our model-
ing work for this Aim with a careful calibration of the Tabasco simulation for wild-type and recoded T7 ge-
nomes. 

 

Figure C4: Predicted effect of modified transla-
tion initiation for gene 10A, using the TABASCO 
simulation. We simulated four different scenarios, 
wt and three different levels of reduction for transla-
tion initiation. This simulation mimics expected re-
sults for recoded RNA secondary structure near the 
start codon (Aim 1.1). The simulation corresponds 
to the first 16 min (~1000s) of a T7 infection. (A) 
mRNA abundances are unchanged, as expected. 
(B) Protein abundances decline in proportion to the 
reduced efficiency of translation initiation.   

 
Plan. We will initially consider T7 wt only. We will fit the TABASCO simulation to all measured RNA and protein 
abundances for wt T7. This fitting procedure entails choosing the optimal rate constants for transcription initia-
tion, transcription elongation, translation initiation, translation elongation, etc., such that simulated RNA and 
protein abundances fall as closely as possible to the values experimentally measured under Aim 2. We will 
perform the fit using Approximate Bayesian Computation [86,87], an iterative strategy that is particularly well-
suited to fit complex simulation models to measured data. 

Once we have obtained satisfactory results for T7 wt, we will repeat the fitting procedure for recoded ge-
nomes. Depending on the type of genome recoding carried out for a particular strain (codon de-optimization, 
genome rearrangement, RNA secondary-structure modification, promoter ablation), we will follow two distinct 
strategies. For some modifications, such RNA secondary-structure modifications and promoter ablations, 
which should alter only translation-initiation rates, we will simply re-fit the model to the new data and obtain 
new rate constants. For other modifications, such as genome rearrangements, we will have to first modify the 
model to reflect the rearrangements, e.g. place all genes under the control of the correct promoters. Finally, for 
codon de-optimizations, we may have to develop a more sophisticated version of TABASCO to capture all 
measurable aspects of the biology (see also Aim 3.2).  
 
Aim 3.2: Incorporate an explicit model of translation into TABASCO simulation. While TABASCO simu-
lates the transcription process with nucleotide-level accuracy, the translation model in TABASCO is not similar-
ly sophisticated. Instead of simulating the movement of individual ribosomes along individual mRNAs, TABAS-
CO treats translation as a single step and assumes that translation proceeds at a given mean elongation rate; 
the exact translation time is then drawn from a gamma distribution [88]. This model has three important draw-
backs that we will overcome here: First, it does not model differential translation speed due to codon usage 
bias. Second, it does not model ribosome-ribosome interactions, such as traffic jams. Third, it does not consid-
er effects that happen on the scale of the cell, such as ribosome depletion due to traffic jams on some tran-
scripts. 
 
Plan. We will pursue two separate approaches to developing a more sophisticated translation model. First, we 
will continue treating translation as a single step but will calculate a gene-specific elongation rate as a function 
of the codon usage in the gene and the ribosome pool in the cell. This approach will cause virtually no slow-
down in the simulation yet already provide much improved model realism. Second, we will simulate individual 
ribosome movements along individual transcripts, using the same techniques Tabasco currently uses to simu-
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late RNA polymerases moving along DNA. This approach will be much slower, but it will allow us to incorporate 
more complex ribosome dynamics, such as ribosome traffic jams or ribosome sequestration, where slow trans-
lation of one gene may inhibit translation of other genes as well. 
 
Aim 3.3: Use TABASCO to predict new attenuations to be tested under Aims 1 and 2. The first-
generation computational model of T7 had previously been used to make predictions about the effects of al-
tered gene order in T7 [85], but there was no further work beyond these initial tests. Here, we will use our cali-
brated and/or modified models from Aims 3.1 and 3.2 to predict novel recodings, and we will subsequently 
build and test them under Aims 1 and 2.  
 
Plan. We will use the simulation model to design at least one recoded genome each, corresponding to the 
goals of Aims 1.1 (altered codon usage), 1.2 (changed gene order), and 1.3 (promoter knockout). In each 
case, we will strive to design a modified phage that shows broad changes in gene expression over many T7 
genes, such that we can expect a major fitness reduction that is difficult to undo in just a few subsequent muta-
tions. At the same time, we will only consider recodings in which all essential T7 genes, and in particular the 
major capsid gene 10A, are predicted to have non-zero protein abundance, such that the phage is still viable. 
Our general aim is to produce attenuated but viable T7 variants. Any design that yields an inviable T7 genome 
does not meet that aim.  
 
Expected results, Aim 3. We expect that we can calibrate TABASCO for the wild-type T7 so that it makes ac-
curate predictions of RNA and protein abundances throughout the T7 life cycle. We further expect that the cali-
brated model will accurately predict some of the modified genomes but not others. For example, as indicated in 
Figure C1, introduction of non-preferred codons into a highly expressed gene may cause ribosome sequestra-
tion, which indirectly affects protein abundances of all viral genes. To capture such effect, we will have to intro-
duce appropriate modifications into TABASCO, as developed under Aim 3.2. In general, we expect that our 
modeling approach will allow us to develop a system-level understanding of T7 gene regulation, transcription, 
and translation, and that it will shed light on unexpected gene interactions, such as recoding of one gene af-
fecting protein abundances of others (Figure C3). Finally, we expect that our calibrated model has predictive 
power, i.e., that it allows us to computationally design novel, attenuated genomes (Aim 3.3).  
 
Potential problems and solutions, Aim 3. We do not expect to encounter any prohibitive problems in this 
Aim. Mathematical models of the T7 life cycle have been used successfully for over 15 years, and they seem 
to generally work well. However, it is possible that we will encounter specific modified genomes whose gene 
expression patterns will not be explainable with the current and/or improved models. Such incidences would 
indicate major missing biology in the model and would require further study and model development.  
 
Time Line 
We will work on all three aims in parallel. For Aim 1, we will carry out additional codon de-optimizations (Aim 
1.1) in Year 1, and genome rearrangements (Aim 1.2) and promoter knock-outs (Aim 1.3) in Year 2. In Years 3 
and 4, we will construct genomes predicted by our computational model (Aim 3.3), and we will pursue addi-
tional modifications as prompted by our findings from Aims 1-3 up to that time. For Aim 2, we will measure pro-
tein abundances, RNA, and ribosomal occupancy for all genomes as they become available. We will begin with 
the genomes we currently have, including codon-modified genomes and genomes with rearranged gene order. 
For Aim 3, we will begin model calibration on the data we have already collected (Figure C3), and will continue 
to improve our models as more data becomes available. We expect to begin working on improved translation 
models in TABASCO (Aim 3.2) in Year 2 and to be able to predict new attenuations (Aim 3.3) beginning with 
Year 3.   
 



 14 

Bibliography  
1.  Hanley KA (2011) The double-edged sword: How evolution can make or break a live-attenuated virus vac-

cine. Evolution 4: 635–643. doi:10.1007/s12052-011-0365-y. 

2.  Coleman JR, Papamichail D, Skiena S, Futcher B, Wimmer E, et al. (2008) Virus attenuation by genome-
scale changes in codon pair bias. Science 320: 1784–1787. doi:10.1126/science.1155761. 

3.  Martrus G, Nevot M, Andres C, Clotet B, Martinez MA (2013) Changes in codon-pair bias of human immu-
nodeficiency virus type 1 have profound effects on virus replication in cell culture. Retrovirology 10: 78. 
doi:10.1186/1742-4690-10-78. 

4.  Meng J, Lee S, Hotard AL, Moore ML (2014) Refining the balance of attenuation and immunogenicity of 
respiratory syncytial virus by targeted codon deoptimization of virulence genes. mBio 5: e01704–e01714. 
doi:10.1128/mBio.01704-14. 

5.  Nougairede A, De Fabritus L, Aubry F, Gould EA, Holmes EC, et al. (2013) Random codon re-encoding 
induces stable reduction of replicative fitness of Chikungunya virus in primate and mosquito cells. PLoS 
Pathog 9: e1003172. doi:10.1371/journal.ppat.1003172. 

6.  Pena L, Sutton T, Chockalingam A, Kumar S, Angel M, et al. (2013) Influenza viruses with rearranged ge-
nomes as live-attenuated vaccines. J Virol. doi:10.1128/JVI.02490-12. 

7.  Le Nouën C, Brock LG, Luongo C, McCarty T, Yang L, et al. (2014) Attenuation of human respiratory syn-
cytial virus by genome-scale codon-pair deoptimization. Proc Natl Acad Sci U S A 111: 13169–13174. 
doi:10.1073/pnas.1411290111. 

8.  Nogales A, Baker SF, Ortiz-Riaño E, Dewhurst S, Topham DJ, et al. (2014) Influenza A virus attenuation 
by codon deoptimization of the NS gene for vaccine development. J Virol 88: 10525–10540. 
doi:10.1128/JVI.01565-14. 

9.  Ni Y-Y, Zhao Z, Opriessnig T, Subramaniam S, Zhou L, et al. (2014) Computer-aided codon-pairs deopti-
mization of the major envelope GP5 gene attenuates porcine reproductive and respiratory syndrome vi-
rus. Virology 450-451: 132–139. doi:10.1016/j.virol.2013.12.009. 

10.  Mueller S, Papamichail D, Coleman JR, Skiena S, Wimmer E (2006) Reduction of the rate of poliovirus 
protein synthesis through large-scale codon deoptimization causes attenuation of viral virulence by lower-
ing specific infectivity. J Virol 80: 9687–9696. doi:10.1128/JVI.00738-06. 

11.  Burns CC, Campagnoli R, Shaw J, Vincent A, Jorba J, et al. (2009) Genetic inactivation of poliovirus infec-
tivity by increasing the frequencies of CpG and UpA dinucleotides within and across synonymous capsid 
region codons. J Virol 83: 9957–9969. doi:10.1128/JVI.00508-09. 

12.  Burns CC, Shaw J, Campagnoli R, Jorba J, Vincent A, et al. (2006) Modulation of poliovirus replicative fit-
ness in HeLa cells by deoptimization of synonymous codon usage in the capsid region. J Virol 80: 3259–
3272. doi:10.1128/JVI.80.7.3259-3272.2006. 

13.  Bull JJ, Molineux IJ, Wilke CO (2012) Slow fitness recovery in a codon-modified viral genome. Mol Biol 
Evol 29: 2997–3004. doi:10.1093/molbev/mss119. 

14.  Ball LA, Pringle CR, Flanagan EB, Perepelitsa VP, Wertz GW (1999) Phenotypic consequences of rear-
ranging the P, M, and G genes of vesicular stomatitis virus. J Virol 73: 4705–4712. 

15.  Novella IS, Ball LA, Wertz GW (2004) Fitness analyses of vesicular stomatitis strains with rearranged ge-
nomes reveal replicative disadvantages. J Virol 78: 9837–9841. doi:10.1128/JVI.78.18.9837-9841.2004. 



 15 

16.  Flanagan EB, Zamparo JM, Ball LA, Rodriguez LL, Wertz GW (2001) Rearrangement of the genes of ve-
sicular stomatitis virus eliminates clinical disease in the natural host: new strategy for vaccine develop-
ment. J Virol 75: 6107–6114. doi:10.1128/JVI.75.13.6107-6114.2001. 

17.  Cecchini N, Schmerer M, Molineux IJ, Springman R, Bull JJ (2013) Evolutionarily stable attenuation by ge-
nome rearrangement in a virus. G3 Bethesda Md 3: 1389–1397. doi:10.1534/g3.113.006403. 

18.  Burns CC, Diop OM, Sutter RW, Kew OM (2014) Vaccine-derived polioviruses. J Infect Dis 210 Suppl 1: 
S283–S293. doi:10.1093/infdis/jiu295. 

19.  Endy D, You L, Yin J, Molineux IJ (2000) Computation, prediction, and experimental tests of fitness for 
bacteriophage T7 mutants with permuted genomes. Proc Natl Acad Sci U S A 97: 5375–5380. 
doi:10.1073/pnas.090101397. 

20.  Kosuri S, Kelly JR, Endy D (2007) TABASCO: A single molecule, base-pair resolved gene expression sim-
ulator. BMC Bioinformatics 8: 480. doi:10.1186/1471-2105-8-480. 

21.  Gu W, Zhou T, Wilke CO (2010) A universal trend of reduced mRNA stability near the translation-initiation 
site in prokaryotes and eukaryotes. PLoS Comput Biol 6: e1000664. doi:10.1371/journal.pcbi.1000664. 

22.  Wilke CO (2012) Bringing molecules back into molecular evolution. PLoS Comput Biol 8: e1002572. 
doi:10.1371/journal.pcbi.1002572. 

23.  Meyer AG, Dawson ET, Wilke CO (2013) Cross-species comparison of site-specific evolutionary-rate varia-
tion in influenza haemagglutinin. Philos Trans R Soc Lond B Biol Sci 368: 20120334. 
doi:10.1098/rstb.2012.0334. 

24.  Zhou T, Gu W, Wilke CO (2010) Detecting positive and purifying selection at synonymous sites in yeast 
and worm. Mol Biol Evol 27: 1912–1922. doi:10.1093/molbev/msq077. 

25.  Wallace EWJ, Airoldi EM, Drummond DA (2013) Estimating selection on synonymous codon usage from 
noisy experimental data. Mol Biol Evol 30: 1438–1453. doi:10.1093/molbev/mst051. 

26.  O’Dea EB, Pepin KM, Lopman BA, Wilke CO (2014) Fitting outbreak models to data from many small no-
rovirus outbreaks. Epidemics 6: 18–29. doi:10.1016/j.epidem.2013.12.002. 

27.  Agashe D, Martinez-Gomez NC, Drummond DA, Marx CJ (2013) Good codons, bad transcript: large re-
ductions in gene expression and fitness arising from synonymous mutations in a key enzyme. Mol Biol 
Evol 30: 549–560. doi:10.1093/molbev/mss273. 

28.  Drummond DA (2012) How infidelity creates a sticky situation. Mol Cell 48: 663–664. 
doi:10.1016/j.molcel.2012.11.024. 

29.  Meyer AG, Wilke CO (2013) Integrating sequence variation and protein structure to identify sites under se-
lection. Mol Biol Evol 30: 36–44. doi:10.1093/molbev/mss217. 

30.  Sedaghat AR, Wilke CO (2011) Kinetics of the viral cycle influence pharmacodynamics of antiretroviral 
therapy. Biol Direct 6: 42. doi:10.1186/1745-6150-6-42. 

31.  Spielman SJ, Dawson ET, Wilke CO (2014) Limited Utility of Residue Masking for Positive-Selection Infer-
ence. Mol Biol Evol. doi:10.1093/molbev/msu183. 

32.  Tien MZ, Meyer AG, Sydykova DK, Spielman SJ, Wilke CO (2013) Maximum allowed solvent accessibilites 
of residues in proteins. PloS One 8: e80635. doi:10.1371/journal.pone.0080635. 



 16 

33.  Spielman SJ, Wilke CO (2013) Membrane environment imposes unique selection pressures on transmem-
brane domains of G protein-coupled receptors. J Mol Evol 76: 172–182. doi:10.1007/s00239-012-9538-8. 

34.  Geiler-Samerotte KA, Dion MF, Budnik BA, Wang SM, Hartl DL, et al. (2011) Misfolded proteins impose a 
dosage-dependent fitness cost and trigger a cytosolic unfolded protein response in yeast. Proc Natl Acad 
Sci U S A 108: 680–685. doi:10.1073/pnas.1017570108. 

35.  Scherrer MP, Meyer AG, Wilke CO (2012) Modeling coding-sequence evolution within the context of resi-
due solvent accessibility. BMC Evol Biol 12: 179. doi:10.1186/1471-2148-12-179. 

36.  Geiler-Samerotte KA, Hashimoto T, Dion MF, Budnik BA, Airoldi EM, et al. (2013) Quantifying condition-
dependent intracellular protein levels enables high-precision fitness estimates. PloS One 8: e75320. 
doi:10.1371/journal.pone.0075320. 

37.  Keller TE, Mis SD, Jia KE, Wilke CO (2012) Reduced mRNA secondary-structure stability near the start 
codon indicates functional genes in prokaryotes. Genome Biol Evol 4: 80–88. doi:10.1093/gbe/evr129. 

38.  Zhou T, Wilke CO (2011) Reduced stability of mRNA secondary structure near the translation-initiation site 
in dsDNA viruses. BMC Evol Biol 11: 59. doi:10.1186/1471-2148-11-59. 

39.  Wilke CO, Drummond DA (2010) Signatures of protein biophysics in coding sequence evolution. Curr Opin 
Struct Biol 20: 385–389. doi:10.1016/j.sbi.2010.03.004. 

40.  Drummond DA, Wilke CO (2009) The evolutionary consequences of erroneous protein synthesis. Nat Rev 
Genet 10: 715–724. doi:10.1038/nrg2662. 

41.  Bull JJ, Heineman RH, Wilke CO (2011) The phenotype-fitness map in experimental evolution of phages. 
PloS One 6: e27796. doi:10.1371/journal.pone.0027796. 

42.  Ramsey DC, Scherrer MP, Zhou T, Wilke CO (2011) The relationship between relative solvent accessibility 
and evolutionary rate in protein evolution. Genetics 188: 479–488. doi:10.1534/genetics.111.128025. 

43.  Wilke CO (2011) Transcriptional robustness complements nonsense-mediated decay in humans. PLoS 
Genet 7: e1002296. doi:10.1371/journal.pgen.1002296. 

44.  Lee Y, Zhou T, Tartaglia GG, Vendruscolo M, Wilke CO (2010) Translationally optimal codons associate 
with aggregation-prone sites in proteins. Proteomics 10: 4163–4171. doi:10.1002/pmic.201000229. 

45.  Meyer AG, Sawyer SL, Ellington AD, Wilke CO (2014) Analyzing machupo virus-receptor binding by mo-
lecular dynamics simulations. PeerJ 2: e266. doi:10.7717/peerj.266. 

46.  Shahmoradi A, Sydykova DK, Spielman SJ, Jackson EL, Dawson ET, et al. (2014) Predicting evolutionary 
site variability from structure in viral proteins: buriedness, packing, flexibility, and design. J Mol Evol 79: 
130–142. doi:10.1007/s00239-014-9644-x. 

47.  Tien MZ, Sydykova DK, Meyer AG, Wilke CO (2013) PeptideBuilder: A simple Python library to generate 
model peptides. PeerJ 1: e80. doi:10.7717/peerj.80. 

48.  Jackson EL, Ollikainen N, Covert AW, Kortemme T, Wilke CO (2013) Amino-acid site variability among 
natural and designed proteins. PeerJ 1: e211. doi:10.7717/peerj.211. 

49.  Paff ML, Stolte SP, Bull JJ (2014) Lethal mutagenesis failure may augment viral adaptation. Mol Biol Evol 
31: 96–105. doi:10.1093/molbev/mst173. 

50.  Kudla G, Murray AW, Tollervey D, Plotkin JB (2009) Coding-sequence determinants of gene expression in 
Escherichia coli. Science 324: 255–258. doi:10.1126/science.1170160. 



 17 

51.  Goodman DB, Church GM, Kosuri S (2013) Causes and effects of N-terminal codon bias in bacterial 
genes. Science 342: 475–479. doi:10.1126/science.1241934. 

52.  Springman R, Kapadia-Desai DS, Molineux IJ, Bull JJ (2012) Evolutionary recovery of a recombinant viral 
genome. G3 Bethesda Md 2: 825–830. doi:10.1534/g3.112.002758. 

53.  Cecchini N, Schmerer M, Molineux IJ, Springman R, Bull JJ (2013) Evolutionarily Stable Attenuation by 
Genome Rearrangement in a Virus. G3 GenesGenomesGenetics 3: 1389–1397. 
doi:10.1534/g3.113.006403. 

54.  Springman R, Badgett MR, Molineux IJ, Bull JJ (2005) Gene order constrains adaptation in bacteriophage 
T7. Virology 341: 141–152. doi:10.1016/j.virol.2005.07.008. 

55.  Dunn JJ, Studier FW (1983) Complete nucleotide sequence of bacteriophage T7 DNA and the locations of 
T7 genetic elements. J Mol Biol 166: 477–535. 

56.  Imburgio D, Rong M, Ma K, McAllister WT (2000) Studies of promoter recognition and start site selection 
by T7 RNA polymerase using a comprehensive collection of promoter variants. Biochemistry (Mosc) 39: 
10419–10430. 

57.  Rong M, He B, McAllister WT, Durbin RK (1998) Promoter specificity determinants of T7 RNA polymerase. 
Proc Natl Acad Sci U S A 95: 515–519. 

58.  Bull JJ, Springman R, Molineux IJ (2007) Compensatory evolution in response to a novel RNA polymerase: 
orthologous replacement of a central network gene. Mol Biol Evol 24: 900–908. 
doi:10.1093/molbev/msm006. 

59.  Springman R, Molineux IJ, Duong C, Bull RJ, Bull JJ (2012) Evolutionary stability of a refactored phage 
genome. ACS Synth Biol 1: 425–430. doi:10.1021/sb300040v. 

60.  Maxwell KL, Frappier L (2007) Viral proteomics. Microbiol Mol Biol Rev MMBR 71: 398–411. 
doi:10.1128/MMBR.00042-06. 

61.  Lavigne R, Ceyssens P-J, Robben J (2009) Phage proteomics: applications of mass spectrometry. Meth-
ods Mol Biol Clifton NJ 502: 239–251. doi:10.1007/978-1-60327-565-1_14. 

62.  Young JC, Dill BD, Pan C, Hettich RL, Banfield JF, et al. (2012) Phage-induced expression of CRISPR-
associated proteins is revealed by shotgun proteomics in Streptococcus thermophilus. PloS One 7: 
e38077. doi:10.1371/journal.pone.0038077. 

63.  Dodt M, Roehr JT, Ahmed R, Dieterich C (2012) FLEXBAR—Flexible Barcode and Adapter Processing for 
Next-Generation Sequencing Platforms. Biology 1: 895–905. doi:10.3390/biology1030895. 

64.  Langmead B, Salzberg SL (2012) Fast gapped-read alignment with Bowtie 2. Nat Methods 9: 357–359. 
doi:10.1038/nmeth.1923. 

65.  Anders S, Huber W (2010) Differential expression analysis for sequence count data. Genome Biol 11: 
R106. doi:10.1186/gb-2010-11-10-r106. 

66.  Ingolia NT, Ghaemmaghami S, Newman JRS, Weissman JS (2009) Genome-wide analysis in vivo of 
translation with nucleotide resolution using ribosome profiling. Science 324: 218–223. 
doi:10.1126/science.1168978. 

67.  Liu X, Jiang H, Gu Z, Roberts JW (2013) High-resolution view of bacteriophage lambda gene expression 
by ribosome profiling. Proc Natl Acad Sci U S A 110: 11928–11933. doi:10.1073/pnas.1309739110. 



 18 

68.  Stern-Ginossar N, Weisburd B, Michalski A, Le VTK, Hein MY, et al. (2012) Decoding human cytomegalo-
virus. Science 338: 1088–1093. doi:10.1126/science.1227919. 

69.  Li G-W, Oh E, Weissman JS (2012) The anti-Shine-Dalgarno sequence drives translational pausing and 
codon choice in bacteria. Nature 484: 538–541. doi:10.1038/nature10965. 

70.  Oh E, Becker AH, Sandikci A, Huber D, Chaba R, et al. (2011) Selective ribosome profiling reveals the co-
translational chaperone action of trigger factor in vivo. Cell 147: 1295–1308. 
doi:10.1016/j.cell.2011.10.044. 

71.  Gingold H, Pilpel Y (2011) Determinants of translation efficiency and accuracy. Mol Syst Biol 7: 481. 
doi:10.1038/msb.2011.14. 

72.  Pechmann S, Frydman J (2013) Evolutionary conservation of codon optimality reveals hidden signatures of 
cotranslational folding. Nat Struct Mol Biol 20: 237–243. doi:10.1038/nsmb.2466. 

73.  Shah P, Gilchrist MA (2011) Explaining complex codon usage patterns with selection for translational effi-
ciency, mutation bias, and genetic drift. Proc Natl Acad Sci U S A 108: 10231–10236. 
doi:10.1073/pnas.1016719108. 

74.  Aragonès L, Guix S, Ribes E, Bosch A, Pintó RM (2010) Fine-Tuning Translation Kinetics Selection as the 
Driving Force of Codon Usage Bias in the Hepatitis A Virus Capsid. PLoS Pathog 6: e1000797. 
doi:10.1371/journal.ppat.1000797. 

75.  Tuller T, Carmi A, Vestsigian K, Navon S, Dorfan Y, et al. (2010) An evolutionarily conserved mechanism 
for controlling the efficiency of protein translation. Cell 141: 344–354. doi:10.1016/j.cell.2010.03.031. 

76.  Tuller T, Veksler-Lublinsky I, Gazit N, Kupiec M, Ruppin E, et al. (2011) Composite effects of gene deter-
minants on the translation speed and density of ribosomes. Genome Biol 12: R110. doi:10.1186/gb-2011-
12-11-r110. 

77.  Reuveni S, Meilijson I, Kupiec M, Ruppin E, Tuller T (2011) Genome-scale analysis of translation elonga-
tion with a ribosome flow model. PLoS Comput Biol 7: e1002127. doi:10.1371/journal.pcbi.1002127. 

78.  Li G-W, Burkhardt D, Gross C, Weissman JS (2014) Quantifying absolute protein synthesis rates reveals 
principles underlying allocation of cellular resources. Cell 157: 624–635. doi:10.1016/j.cell.2014.02.033. 

79.  Drummond DA, Wilke CO (2008) Mistranslation-induced protein misfolding as a dominant constraint on 
coding-sequence evolution. Cell 134: 341–352. doi:10.1016/j.cell.2008.05.042. 

80.  Ran W, Higgs PG (2012) Contributions of speed and accuracy to translational selection in bacteria. PloS 
One 7: e51652. doi:10.1371/journal.pone.0051652. 

81.  Lu P, Vogel C, Wang R, Yao X, Marcotte EM (2007) Absolute protein expression profiling estimates the 
relative contributions of transcriptional and translational regulation. Nat Biotechnol 25: 117–124. 
doi:10.1038/nbt1270. 

82.  Studier FW, Dunn JJ (1983) Organization and expression of bacteriophage T7 DNA. Cold Spring Harb 
Symp Quant Biol 47 Pt 2: 999–1007. 

83.  Garcia LR, Molineux IJ (1995) Rate of translocation of bacteriophage T7 DNA across the membranes of 
Escherichia coli. J Bacteriol 177: 4066–4076. 

84.  Endy D, Kong D, Yin J (1997) Intracellular kinetics of a growing virus: A genetically structured simulation 
for bacteriophage T7. Biotechnol Bioeng 55: 375–389. doi:10.1002/(SICI)1097-
0290(19970720)55:2<375::AID-BIT15>3.0.CO;2-G. 



 19 

85.  Endy D, You L, Yin J, Molineux IJ (2000) Computation, prediction, and experimental tests of fitness for 
bacteriophage T7 mutants with permuted genomes. Proc Natl Acad Sci 97: 5375–5380. 
doi:10.1073/pnas.090101397. 

86.  Sunnåker M, Busetto AG, Numminen E, Corander J, Foll M, et al. (2013) Approximate Bayesian Computa-
tion. PLoS Comput Biol 9: e1002803. doi:10.1371/journal.pcbi.1002803. 

87.  Toni T, Welch D, Strelkowa N, Ipsen A, Stumpf MPH (2009) Approximate Bayesian computation scheme 
for parameter inference and model selection in dynamical systems. J R Soc Interface 6: 187–202. 
doi:10.1098/rsif.2008.0172. 

88.  Gibson MA, Bruck J (2000) Efficient Exact Stochastic Simulation of Chemical Systems with Many Species 
and Many Channels. J Phys Chem A 104: 1876–1889. doi:10.1021/jp993732q. 

 


