Feb 21, 2019
In this worksheet, we will use the libraries tidyverse and ggthemes:
library(tidyverse)
theme_set(theme_bw(base_size=12)) # set default ggplot2 theme
library(ggthemes)
We can do k-means clustering in R using the function kmeans()
. The primary argument to this function is centers
, which tells the function how many cluster centers we want to use:
iris %>%
select(-Species) %>% # remove Species column
kmeans(centers=3) -> # do k-means clustering with 3 centers
km # store result as `km`
# now display the results from the analysis
km
## K-means clustering with 3 clusters of sizes 21, 33, 96
##
## Cluster means:
## Sepal.Length Sepal.Width Petal.Length Petal.Width
## 1 4.738095 2.904762 1.790476 0.3523810
## 2 5.175758 3.624242 1.472727 0.2727273
## 3 6.314583 2.895833 4.973958 1.7031250
##
## Clustering vector:
## [1] 2 1 1 1 2 2 2 2 1 1 2 2 1 1 2 2 2 2 2 2 2 2 2 2 1 1 2 2 2 1 1 2 2 2 1
## [36] 2 2 2 1 2 2 1 1 2 2 1 2 1 2 2 3 3 3 3 3 3 3 1 3 3 1 3 3 3 3 3 3 3 3 3
## [71] 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 1 3 3 3 3 1 3 3 3 3 3 3
## [106] 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
## [141] 3 3 3 3 3 3 3 3 3 3
##
## Within cluster sum of squares by cluster:
## [1] 17.669524 6.432121 118.651875
## (between_SS / total_SS = 79.0 %)
##
## Available components:
##
## [1] "cluster" "centers" "totss" "withinss"
## [5] "tot.withinss" "betweenss" "size" "iter"
## [9] "ifault"
The cluster means give us the locations of the centroids of the three clusters. We can access them directly via km$centers
:
km$centers
## Sepal.Length Sepal.Width Petal.Length Petal.Width
## 1 4.738095 2.904762 1.790476 0.3523810
## 2 5.175758 3.624242 1.472727 0.2727273
## 3 6.314583 2.895833 4.973958 1.7031250
The clustering vector tells us for each data point to which cluster it belongs. We can access this vector directly via km$cluster
:
km$cluster
## [1] 2 1 1 1 2 2 2 2 1 1 2 2 1 1 2 2 2 2 2 2 2 2 2 2 1 1 2 2 2 1 1 2 2 2 1
## [36] 2 2 2 1 2 2 1 1 2 2 1 2 1 2 2 3 3 3 3 3 3 3 1 3 3 1 3 3 3 3 3 3 3 3 3
## [71] 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 1 3 3 3 3 1 3 3 3 3 3 3
## [106] 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
## [141] 3 3 3 3 3 3 3 3 3 3
We can add this vector to the iris data frame and then plot, coloring by cluster and using different symbol shapes according to species, for comparison:
# we use `factor(km$cluster)` to tell R that the cluster numbers represent distinct categories,
# not continuous values
iris_clustered <- data.frame(iris, cluster = factor(km$cluster))
ggplot(
iris_clustered,
aes(x = Petal.Width, y = Sepal.Width, color = cluster, shape = Species)
) +
geom_point() +
scale_color_colorblind()
Let’s do everything once more:
iris %>% select(-Species) %>% kmeans(centers = 3) -> km
iris_clustered <- data.frame(iris, cluster = factor(km$cluster))
ggplot(
iris_clustered,
aes(x = Petal.Width, y = Sepal.Width, color = cluster, shape = Species)
) +
geom_point() +
scale_color_colorblind()
You see that the results do not look the same. This happens because the k-means algorithm uses a random starting point. To make the results less random, we can set the parameter nstart
to a value other than 1, e.g. nstart=10
:
iris %>% select(-Species) %>% kmeans(centers = 3, nstart = 10) -> km
iris_clustered <- data.frame(iris, cluster = factor(km$cluster))
ggplot(
iris_clustered,
aes(x = Petal.Width, y = Sepal.Width, color = cluster, shape = Species)
) +
geom_point() +
scale_color_colorblind()
To determine the best number of clusters in a systematic way, we can plot the within-groups sum of squares against the number of clusters and look for a characteristic slowdown in the decline:
iris_numeric <- select(iris, -Species) # make a data table with only the numeric measurements from iris
# calculate the weighted sum squares (wss) for a single cluster
wss <- (nrow(iris_numeric)-1)*sum(apply(iris_numeric, 2, var))
# now calculate the weighted sum squares for all cluster numbers from 2 to 15
for (i in 2:15) {
wss[i] <- sum(
kmeans(
iris_numeric,
nstart = 10,
centers = i
)$withinss
)
}
# turn wss data into a data frame for plotting
wss_data <- data.frame(centers = 1:15, wss)
# make plot
ggplot(wss_data, aes(x = centers, y = wss)) +
geom_point() +
geom_line() +
xlab("Number of Clusters") +
ylab("Within groups sum of squares")
We see that around 3 clusters, the decline slows down a lot. We would then choose 3 or 4 clusters for this data set.
For more information about choosing the number of clusters, read this post on stackoverflow.com.
Take the biopsy
data set, cluster it into 2, 3, or 4 clusters, and display the clusters in principal-component space. (In other words, plot PC2 vs PC1 and color by cluster. You can set the plotting symbol by outcome, to see how clustering compares with known outcomes.)
# load in the biopsy data set
biopsy <- read.csv("http://wilkelab.org/classes/SDS348/data_sets/biopsy.csv")
head(biopsy)
## clump_thickness uniform_cell_size uniform_cell_shape marg_adhesion
## 1 5 1 1 1
## 2 5 4 4 5
## 3 3 1 1 1
## 4 6 8 8 1
## 5 4 1 1 3
## 6 8 10 10 8
## epithelial_cell_size bare_nuclei bland_chromatin normal_nucleoli mitoses
## 1 2 1 3 1 1
## 2 7 10 3 2 1
## 3 2 2 3 1 1
## 4 3 4 3 7 1
## 5 2 1 3 1 1
## 6 7 10 9 7 1
## outcome
## 1 benign
## 2 benign
## 3 benign
## 4 benign
## 5 benign
## 6 malignant
# do PCA on biopsy data set
biopsy %>%
select(-outcome) %>%
scale() %>%
prcomp() ->
pca
Hint: To create the plot, you will have to make a new data frame out of the pca coordinates (pca$x
) and the clustering results (km$cluster
).
# your R code goes here
For the biopsy
dataset, plot the within-group sum of squares against the number of clusters, to determine the appropriate number of clusters.
# your R code goes here
Now, go back to the original clustering of the iris
data set, with 3 clusters:
iris %>%
select(-Species) %>%
kmeans(centers = 3, nstart = 10) ->
km
iris_clustered <- data.frame(iris, cluster = factor(km$cluster))
ggplot(
iris_clustered,
aes(x = Petal.Width, y = Sepal.Width, color = cluster, shape = Species)
) +
geom_point() +
scale_color_colorblind()
Take this plot and add to it the location of the centroids for each cluster, plotted as large, colored circles with a black outline.
# your R code goes here